数学上可积函数是存在积分的函数吗?
数学上,可积函数是存在积分的函数。除非特别指明,一般积分是指勒贝格积分;否则,称函数为"黎曼可积"(也即黎曼积分存在),或者"Henstock-Kurzweil可积",等等。黎曼积分在应用领域取得了巨大的成功,但是黎曼积分的应用范围因为其定义的局限而受到限制;勒贝格积分是在勒贝格测度理论的基础上建立起来的,函数可以定义在更一般的点集上,更重要的是它提供了比黎曼积分更广泛有效的收敛定理,因此,勒贝格积分的应用领域更加广泛。
黎曼积分与勒贝格积分是可积函数吗?
黎曼积分在应用领域取得了巨大的成功,但是黎曼积分的应用范围因为其定义的局限而受到限制。由于黎曼可积函数主要是连续函数或不连续点不太多的函数,使得黎曼积分在量子力学和概率论中的应用都遇到了瓶颈。仅从数学分析中的一些重要结果如积分与极限交换次序、重积分交换次序、牛顿一莱布尼茨公式等来看,黎曼积分要求的条件苛刻,对于一些问题的处理显得力不从心,但是在勒贝格积分的框架下,上述问题就会得到较为圆满的解决。另外为引入积分而得到的勒贝格测度概念还使数学分析中本来很难讲清楚的一些道理(如单调函数的可微性、黎曼可积的充要条件等)变得清晰
Copyright 2015-2022 财富赢家网版权所有 联系邮箱:920 891 263@qq.com