从混淆矩阵得到分类指标是什么?概率论的发展是什么意思?

2023-02-15 09:51:17 来源:创视网

从混淆矩阵得到分类指标

从混淆矩阵当中,可以得到更高级的分类指标:Accuracy(精确率),Precision(正确率或者准确率),Recall(召回率),Specificity(特异性),Sensitivity(灵敏度)。

计算方法

对于二分类问题,可以将样例根据其真实类别与机器学习器预测类别的组合划分为:

样例总数 = TP + FP + TN + FN。

则可以计算指标:

精确率(Accuracy):精确率是最常用的分类性能指标。可以用来表示模型的精度,即模型识别正确的个数/样本的总个数。一般情况下,模型的精度越高,说明模型的效果越好。

Accuracy = (TP+TN)/(TP+FN+FP+TN)

正确率或者准确率(Precision):又称为查准率,表示在模型识别为正类的样本中,真正为正类的样本所占的比例。一般情况下,查准率越高,说明模型的效果越好。

Precision = TP/(TP+FP)

概率论的发展是?

随着18、19世纪科学的发展,人们注意到在某些生物、物理和社会现象与机会游戏之间有某种相似性,从而由机会游戏起源的概率论被应用到这些领域中;同时这也大大推动了概率论本身的发展。使概率论成为数学的一个分支的奠基人是瑞士数学家伯努利,他建立了概率论中第一个极限定理,即伯努利大数定律,阐明了事件的频率稳定于它的概率。随后棣莫弗和拉普拉斯又导出了第 二个基本极限定理(中心极限定理)的原始形式。

x 广告
x 广告

Copyright   2015-2022 财富赢家网版权所有  联系邮箱:920 891 263@qq.com

京ICP备2022016840号-48